Adjustment Mode

In Adjustment Mode, the transceiver can adjusted using its panel keys.

■ Items that can be adjusted in Adjustment Mode *1

- 1. Frequency Tune
- 2. Transmit High Power *2
- Transmit Low Power *2
- 4. DCS Balance *3
- 5. Max Deviation *3
- 6. CTCSS Fine Deviation *3
- 7. DCS Fine Deviation *3
- 8. DTMF Fine Deviation
- 9. Band Pass Tuning *4
- 10. Squelch Tight *5
- 11. Squelch Open *5
- 12. S-Meter S1 Level
- 13. S-Meter Full Level

Note:

- *1 : The PLL lock voltage and Max Power Alignment for transmission cannot be adjusted in Adjustment Mode.
- *2: Adjusted in 5 points in the transmission operating frequency range.
- *3: Adjusted in 3 points for the Wide Band Width in the transmission operating frequency range. Adjusted in 1 point for the Narrow Band Width
- *4 : Adjusted in 3 points in the reception operating frequency range.
- *5 : Adjusted in 3 points for the Wide Band Width in the reception operating frequency range. Adjusted in 1 point for the Narrow Band Width

■ How to Enter Adjustment Mode

To perform adjustments with transceiver panel keys, the transceiver must be set to "Adjustment Mode".

While shorting the following figure terminals on the PCB with tweezers, etc., turn the power switch ON to enter Adjustment Mode. (See Fig. 1.)

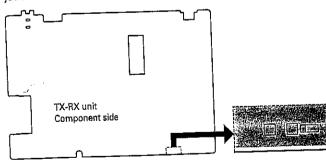


Fig. 1

■ LCD Display When Adjustment Mode is Enabled

Example of Frequency Tune. See "Table 1" for an LCD display list.

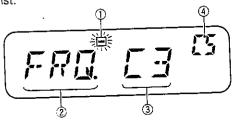


Fig. 2

- 1 Blinks in Adjustment Mode.
- 2) Adjustment item display
- 3 Adjustment value display. Can be adjusted while it is "blinking".

Displayed as a hexadecimal number from 00 to FF.

Adjustment value stored in memory.

When an adjustment value is determined, it is equal to the value in "3".

■ Panel Key Operation Method in Adjustment Mode

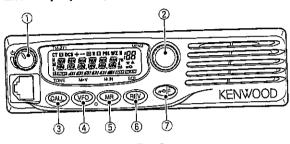


Fig. 3

- Power switch/Volume control
- ② When the knob is pressed once, the adjustment value display blinks. (Select an adjustment item with "4" or "5" key before performing the operation. It cannot be performed while transmitting.)

When the knob is rotated while the adjustment display is blinking, the adjustment value changes. (Adjust transmission items while transmitting.)

When the knob is pressed again, the adjustment value stops blinking and lights, and the adjustment value is saved in the memory of the transceiver. (For transmission item adjustment, enter receive mode before performing the operation.)

3 Changing between adjustment value display and frequency display

The display changes as follows: Adjustment value display ightarrow Transmit frequency display ightarrow Receive frequency display \rightarrow Adjustment value display.

The frequency for adjustment can be confirmed.

- 4 Moves the adjustment item backward. (If it is operated when a frequency is displayed, the adjustment item display returns.)
- ⑤ Moves the adjustment item forward. (If it is operated when a frequency is displayed, the adjustment item display returns.)
- (6) If it is pressed before determining the adjustment value, the adjustment value of the Adjustment item returns to its original value.
- ⑦ Not used in Adjustment Mode.

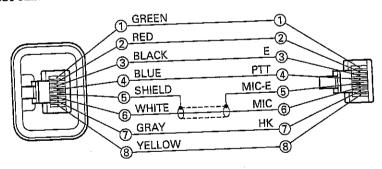
Note:

If Max Power for transmission is low, check the DC cable. If the DC cable connector has poor contact due to rust or stain, voltage may drop occur frequently and correct transmission power may not be supplied.

In this case, polish the DC cable connector. If the problem still persists, replace the DC cable with a new one.

Adjustment Item	Adjustment	On the	Note	Γransmit │	Receive	Signalling
	Frequency Point	Display		(MHz)	(MHz)	
requency Tune	Center	FRQ.		155.10	155.05	
X High Power	Low		"H" icon appear	136.10	136.05	•
V Light Lovver	Low'	HPL !		142.10	142.05	
ļ	Center	HPE .		150.10	150.05	
	High'	нРн (156.10	156.05	
	High	нРн .	Ī	173.90	173.95	
X Low Power	Low		"L" icon appear	136.10	136.05	
V 5000 1 0000;	Low'	LPL L		142.10	142.05	
	Center	LPE .		150.10	150.05	
e e	High'	LPH t		156.10	156.05	
	High	LPH.		173.90	173.95	
DCS Balance	Low	BRLL.	"DCS" icon appear	136.10	136.05	DCS: 023N
DC2 Dalatice	Center	BRLC.	Ī	155.10	155.05	
	High	BALH		173.90	173.95	
DCS Balance (Narrow)	Center	BRLC.	"DCS" and "N" icon appear	155.10	155.05	
Max Deviation	Low	MR#L.		136.10	136.05	
Max Deviation	Center	MR X E.		155.10	155.05	
	High	MAKH		173.90	173.95	
Max Deviation (Narrow)	Center	MR X E.	"N" icon appear	155.10	155.05	
CTCSS Fine Deviation	Low	III' L.	"CT" icon appear	136.10	136.05	CTCSS: 88.5Hz
C1C33 Lille Deviation	Center	BUE.		155.10	155.05	
	High]]I'H	-	173.90	173.95	
CTCSS Fine Deviation (Narrow	 	Br E.	"CT" and "N" icon appear	155.10	155.05	
DCS Fine Deviation	Low	III'L.	"DCS" icon appear	136.10	136.05	DCS: 023N
DC2 title Deviation	Center	III. E.	-	155.10	155.05	
	High	BUH		173.90	173.95	
DCS Fine Deviation (Narrow		Br C.	"DCS" and "N" icons appea	r 155.10	155.05	
DTMF Fine Deviation	Center	<u> </u>		155.10	155.05	DTMF:9
DTMF Fine Deviation (Narrov		IT.	"N" icon appear	155.10	155.05	
Band Pass Tuning	Low	BPL.	"BUSY" icon appear	136.10	136.05	
Dallu I ass Turning	Center	BPC.	1	155.10	155.05	
	High	BPH		173.9	173.95	
Squeich Tight	Low	SOTL.		136.1	136.05	
) Squelcit right	Center	SOTE.		146.1	0 146.05	
	High	SOTH		173.9	0 173.95	
Squelch Tight (Narrow)		SOTE.		146.1	0 146.05	
Squeich Open	Low	500L.		136.1	0 136.05	
aqueidii Opeii	Center	5000	 -	146.1	0 146.05	
	High	500H		173.9	173.95	
Squelch Open (Narrow		5000		146.	0 146.05	
S-Meter S1 Level	Center	5 !		146.	146.05	
S-Meter Full Level	Center	57		146.	10 146.05	

Table 1 Adjustment items, display and test frequency list

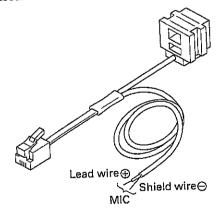

TM-271A/271E

ADJUSTMENT

Test Equipment Required for Alignment

est Equipment Requirement		Major Specifications
Standard Signal Generator (SSG)	Frequency Range Modulation Output	136 to 175MHz Frequency modulation and external modulation -127dBm/0.1µV to greater than -7dBm/100mV
2. Power Meter	Input Impedance Operation Frequency Measurement Capability	50Ω 136 to 175MHz or more Vicinity of 100W 136 to 175MHz
Deviation Meter Digital Volt Meter (DVM)	Frequency Range Measuring Range Accuracy	1 to 20V DC High input impedance for minimum circuit loading DC through 30MHz
Oscilloscope High Sensitivity Frequency Counter	Frequency Range Frequency Stability	10Hz to 1000MHz 0.2ppm or less
7. Ammeter 8. AF Volt Meter	Frequency Range Voltage Range	20A 50Hz to 10kHz 1mV to 3V
9. Audio Generator (AG)	Frequency Range Output	20Hz to 20kHz or more 0 to 1V
10. Distortion Meter	Capability Input Level	3% or less at 1kHz 50mV to 10Vrms Approx. 8Ω, 10W or more
11. 8Ω Dummy Load12. Regulated Power Supply		13.8V, approx. 20A (adjustable from 9 to 17V) Useful if ammeter requipped 50KHz to 1000MHz
13. Spectrum Analyzer 14. Tracking Generator	Center frequency Output Voltage	100mV or more

Test cable for microphone input (E30-3360-08)


MIC connector (Front view)

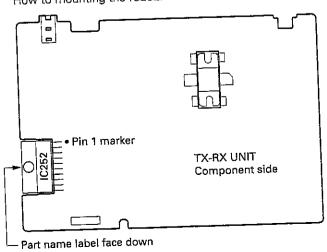
- 1:BLC
- 2: PSB
- 3 : E
- 4 : PTT
- 5 : ME
- 6: MIC
- 7: HOOK
- 8 : CM

Tuning cable (E30-3383-05)

Adapter cable (E30-3383-05) is required for injecting an audio if adjustment mode is used.

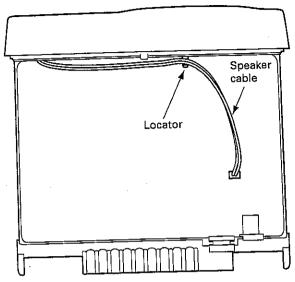
Adjustment Location

■ Adjustment Points

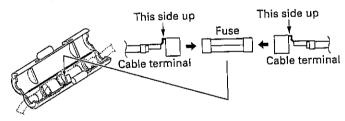

■ Notes

• EEPROM

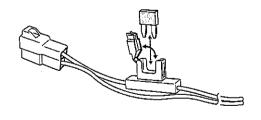
The tuning data (Deviation, Squelch, etc.) for the EEP-ROM, is stored in memory. When parts are changed, readjust the transceiver.


AF PA IC (IC252)

How to mounting the IC252.


Speaker Cable

The speaker cable should be formed before mounting the shield cover as below.



To mount the fuse, the cable terminal direction must be as follow.

Except the E type models

• E type models

TM-271A/271E

ADJUSTMENT

PCB Section

CB Sect	ion	Measureme	nt		Adjustment	Specifications/ Remarks
ltem	Condition	Test equipment	Terminal	Parts	Method	
1. Setting	Power supply voltage DC Power supply terminal: 13.8V					
- 1/00 l-ala	1) CH : TX high	Digital voltmeter	CV	TC402	5.5V	±0.2V
2. VCO lock voltage*				TC401	5.5V	±0.2V
	2) CH : RX high	<u> </u>			Check	0.5V or more
	3) CH : TX low	-				
ļ 	4) CH: RX low		AFV	L301	3.25~3.35V (DC)	
3. IF coil	1) CH: RX center (Wide) 2) SSG output: -53dBm (501µV) Mod: 1kHz Dev: 3kHz	SSG Digital voltmeter	Arv			

* Adjustment of TX VCO lock voltage

- 1. Remove R516, F501, R518 and R524 (all on component side).
- 2. Remove PCB from chassis.
- 3. Transmit and check voltage at [CV] point.

Warning: Do not transmit if step "1." is not complete.

4. Adjust of voltage can be done by tuning FC402.

Transmitter Section

ransmiti	ter Section	Measureme	nt		Adjustment	Specifications/
	Condition		Terminal	Parts	Method	Remarks
Item	00:10:10:1	Test equipment	+	Encoder	Adjust to center frequency	Within ±50Hz
I, Frequency	1) CH: TX center 2) Transmit	Frequency counter	ANT	knob	Adjust to content to the	
ì		 	-	VR601	55W	±1W
2. Maximum power alignment	2) Adjustment HEX value : FF	Power meter		VIIOO		
3. High power	1) CH: TX low CH: TX low' CH: TX center CH: TX high' CH: TX high 2) Transmit			Encoder knob	Low: 50W Low: 60W Center: 60W High: 50W High: 50W	±1.0W
4. Low power	1) CH: TX low CH: TX low' CH: TX center CH: TX high' CH: TX high 2) Transmit				25W Adjust the waveform as belo	±1.0W
5. DCS balance	1) CH: TX low (Wide) CH: TC center (Wide/Narrow CH: TX high (Wide) 2) Transmit	Modulation analyz or Linear detector (LPF : 3kHz) Oscilloscope			Adjust die Watersman	

		Measuremen	nt		Adjustment	Specifications/
ltem	Condition	Test equipment	Terminal	Parts	Method	Remarks
6. MAX deviation	1) CH: TX low (Wide) CH: TX center (Wide/Narrow) CH: TX high (Wide) 2) AG: 1kHz/50mV 3) Transmit	Modulation analyzer or Linear detector (LPF : 15kHz) Oscilloscope AG	ANT	Encoder knob	±4.0kHz (Wide) ±2.0kHz (Narrow) According to the large +, –	±100Hz (Wide) ±50Hz (Narrow)
7. MIC sensitivity	1) CH: TX center (Narrow) 2) AG: 1kHz/5.4mV (TM-271A) AG: 1kHz/2.4mV (TM-271E) 3) Transmit	AF V.M			Check	±1.2~1.9kHz (Narrow)
8. CTCSS fine deviation	1) CH : TX low (Wide) CH : TX center (Wide/Narrow) CH : TX high (Wide) 2) Transmit	Modulation analyzer or Linear detector (LPF : 3kHz) Oscilloscope		Encoder knob	±0.75kHz (Wide) ±0.35kHz (Narrow)	±50Hz
9. DCS fine deviation	1) CH: TX low (Wide) CH: TX center (Wide/Narrow) CH: TX high (Wide) 2) Transmit				±0.75kHz (Wide) ±0.35kHz (Narrow)	±50Hz (Wide) ±40Hz (Narrow)
10. DTMF fine deviation	1) CH : TX center (Wide/Narrow) 2) Transmit				±3.0kHz (Wide) ±1.5kHz (Narrow)	±200Hz (Wide) ±100Hz (Narrow

If normal power is not obtained, please follow the step below

Open the shielding cover (upper), and screw 3 locations around ANT pin.

- 1. Switch off the transceiver.
 - Impedance of Final FET (Q504) and Drive FET (Q503) can be measured easily using DVM Ω mode.
 - Normal condition Gate : $20k\Omega{\sim}50k\Omega$, Drain : $1M\Omega{\sim}2M\Omega$ The above impedance values are rough estimations.
- 2. Switch on the transceiver. Check the voltage at F501 output point.
 - The voltage is around 13.8V in receiving condition. The voltage will be 12.6V~ in transmitting condition. If found 0V at this point then F501 is broken.
- 3. Remove R516.

- 4. Connect 50Ω load at the ANT location.
 - Transmit and check current drain at High power mode. If the current drain is less than 1A, then Final FET is bro-
 - If the current drain is less than 5.0A, short the Drive FET gate to ground, and check the current drain.
 - If the current drain is not 0.1A less than the original value, then the Drive FET is broken.
- 5. Check input power level at Drive FET gate location.
 - Connect the wire to [RF] location.
 - Transmit and check for power to be within the range of 0.3W~0.6W.
 - If power found is less than 0.3W, check the circuit before the Drive FET.

Receiver Section

Receiver Section		Measureme	nt		Adjustment	Specifications/
item	Condition	Test equipment	Terminal	Parts	Method	Remarks
1. Band pass tuning	1) CH: RX low (Wide) CH: RX center (Wide/Narrow) CH: RX high (Wide) 2) SSG output : -121dBm (0.2μV) (Wide) : -119dBm (0.25μV) (Narrow) Mod: 1kHz Dev: ±3.0kHz (Wide) Dev: ±1.5kHz (Narrow)	SSG Oscilloscope AF V.M Distortion meter	ANT EXT. SP	Encoder knob	Adjust to maximum SINAD.	SINAD : 12dB or higher

ΓM-271A/271E

ADJUSTMENT

		Measureme	nt		Adjustment	Specifications/	
Item	Condition	Test equipment	Terminal	Parts	Method	Remarks	
2. Squelch tight	1) CH: RX low (Wide) CH: RX center (Wide/Narrow) CH: RX high (Wide) 2) SSG output : -115dBm (0.4µV) (Wide/Narrow) Mod: 1kHz Dev: ±3.0kHz (Wide) Dev: ±1.5kHz (Narrow)	SSG Oscilloscope AF V.M Distortion meter	ANT EXT. SP	Encoder knob	Adjust to open the squelch		
3. Squeich open	1) CH: RX low (Wide) CH: RX center (Wide/Narrow) CH: RX high (Wide) 2) SSG output : -125dBm (0.126μV) (Wide/Narrow) Mod: 1kHz Dev: ±3.0kHz (Wide) Dev: ±1.5kHz (Narrow)						
4. RSSI writing	1) CH: RX center (Wide) 2) SSG output: -53dBm (501μV) Mod: 1kHz Dev: ±3.0kHz			Push encoder knob	RSSI value writing is performed by the "Squelch open" item (center wide). SSG output level is changed and adjusted after SQ adjustment. This adjustment should not turn the encoder.		
5. S-meter S1	1) CH: RX center (Wide) 2) SSG output: -118dBm (0.28μV Mod: 1kHz Dev: ±3.0kHz	2					
6. S-meter full scale	1) CH: RX center (Wide) 2) SSG output: -96dBm (3.54µV) Mod: 1kHz Dev: ±3.0kHz						

TERMINAL FUNCTION

TX-RX UNIT (X57-685X-XX)

ON No.	Pin No.	Name	Function
CN1	1	ENC A	Encoder A
!	2	СМ	Microphone Key Check
	3	ENC B	Encoder B
	4	MIC KEY	Microphone Key
	5	DI	Data Out from LCD
	6	CE	Chip Enable for LCD
	7	CL	Clock for LCD
	8	DO	Data transfer to LCD
	9	5C	5V DC power supply
	10	8C	8V DC supply
	11	VOL	Volume
	12	POWER	Power Key
	13	RXD	RXD
	14	BRI	Brightness Control
	15	PTT	PTT
	16	GND	Ground
	17	GND	Ground
	18	MIC	Microphone
CN2	! 1	GND	Ground
	2	SQC	Squeich Signal
	3	PKS	Transmission Control
	4	PR1	1200bps Receive Data
	5	PR9	9600bps Receive Data
	6	GND	Ground
	7	PKD	Transmission Modulation

CN No.	Pin No.	Name	Function
CN5	1	INT SP	Internal speaker
	2	GND	Ground

DISLAY UNIT (X54-3450-10)

CN No.	Pin No.	Name	Function
CN1	1	ENC A	Encoder A
	2	СМ	Microphone Key Check
•	3	ENC B	Encoder B
	4	MIC KEY	Microphone Key
	5	DI	Data Out from LCD
	6	CE	Chip Enable for LCD
	7	CL	Clock for LCD
	8	DO	Data transfer to LCD
	9	5C	5V DC power supply
}	10	8C	8V DC supply
	11	VOL	Volume
	12	POWER	Power Key
	13	RXD	RXD
1	14	BRI	Brightness Control
	15	PTT	PTT
	16	GND	Ground
	17	ME	ME
	18	MIC	Microphone

Kenwood TM-271A Mod for PL Decode Logic Out

I found what I consider a major flaw when using the Kenwood TM-271A 2 meter radio as a remote base. There is no way to use it in full PL mode. You can program it for full PL but there is only a COS logic line available externally to the RC-210. Thus when the Kenwood is in full PL mode the RC-210 thinks it sees a regular carrier operated radio. I figured out where to tap into the Kenwood to get a valid PL logic output.

To modify the radio you will need a 2N3904 transistor, a 10k resistor and a 1k resistor. I assume you have already done the remote "packet connector" mod to use the radio as a remote base.

Refer to the TM-271 service manual. It turns there is valid PL logic available inside the radio at pin 51 (SPM) of the CPU (IC-101). That is hairy to get to. I also wanted to buffer the logic line. That logic is also available at Q 254 transistor's base. Refer to figure 1. What I did was connect a 10 K resistor to Q 254's base. The other end of the 10 K resistor goes to the base of a 2N3904 transistor I added to the radio. The emitter of the 2N3904 gets a ground by connecting to pin 9 of IC 252. The collector of the 2N3904 connects to a 1K pull up resistor to pin 7 of IC 252 which is a convenient 5 volt source. The violet wire in figure 1 ties to the collector of the 2N3904. The violet wire is brought out to the rear of the radio. This violet wire is the valid PL Decode line. It goes 5 volts HI on valid PL decode.

Because I am using a 10 k resistor in the base of the transistor it places a negligible load on the CPU line.

One caveat. For this mod to work the Kenwood's volume control has to be set at greater than the 9 o'clock position. I also understand the COS line will not work unless the volume control is set to greater than the 9 o'clock position. When the Kenwood is set to COS only the PL logic line will go high on a valid squelch break. That was not a problem for me. This mod should work with any controller that supports the Kenwood TM-271A. I'm using mine with an Arcom RC-210 and it works fine.

You can copy this document with no restrictions provided it is not modified and proper credit is given.

73 and Good Luck

Bernie Parker

K5BP

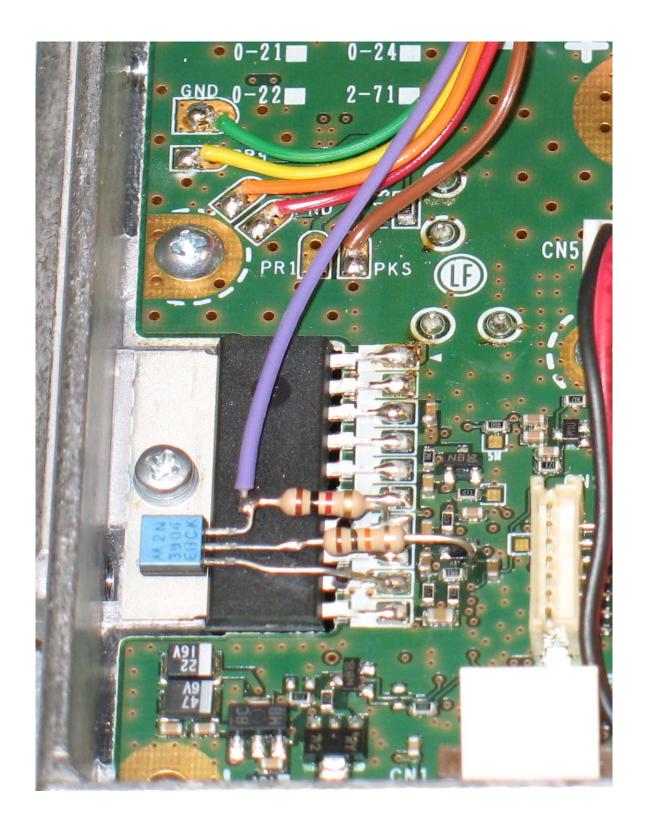


FIGURE 1

LH side of top of Kenwood TM-271